Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses.

Fiche du document

Date

2018

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0192460

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/29466398

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1932-6203

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_77ADA568BCF27

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer



Sujets proches En

Pattern Model

Citer ce document

R. Kanitz et al., « Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses. », Serveur académique Lausannois, ID : 10.1371/journal.pone.0192460


Métriques


Partage / Export

Résumé 0

Although it is generally accepted that geography is a major factor shaping human genetic differentiation, it is still disputed how much of this differentiation is a result of a simple process of isolation-by-distance, and if there are factors generating distinct clusters of genetic similarity. We address this question using a geographically explicit simulation framework coupled with an Approximate Bayesian Computation approach. Based on six simple summary statistics only, we estimated the most probable demographic parameters that shaped modern human evolution under an isolation by distance scenario, and found these were the following: an initial population in East Africa spread and grew from 4000 individuals to 5.7 million in about 132 000 years. Subsequent simulations with these estimates followed by cluster analyses produced results nearly identical to those obtained in real data. Thus, a simple diffusion model from East Africa explains a large portion of the genetic diversity patterns observed in modern humans. We argue that a model of isolation by distance along the continental landmasses might be the relevant null model to use when investigating selective effects in humans and probably many other species.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en