Industrial Biotechnology Conservation Processes: Similarities with Natural Long-Term Preservation of Biological Organisms.

Fiche du document

Date

31 janvier 2023

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.3390/biotech12010015

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/36810442

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/2673-6284

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_2479CFE45C727

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/




Citer ce document

A. Laurent et al., « Industrial Biotechnology Conservation Processes: Similarities with Natural Long-Term Preservation of Biological Organisms. », Serveur académique Lausannois, ID : 10.3390/biotech12010015


Métriques


Partage / Export

Résumé 0

Cryopreservation and lyophilization processes are widely used for conservation purposes in the pharmaceutical, biotechnological, and food industries or in medical transplantation. Such processes deal with extremely low temperatures (e.g., -196 °C) and multiple physical states of water, a universal and essential molecule for many biological lifeforms. This study firstly considers the controlled laboratory/industrial artificial conditions used to favor specific water phase transitions during cellular material cryopreservation and lyophilization under the Swiss progenitor cell transplantation program. Both biotechnological tools are successfully used for the long-term storage of biological samples and products, with reversible quasi-arrest of metabolic activities (e.g., cryogenic storage in liquid nitrogen). Secondly, similarities are outlined between such artificial localized environment modifications and some natural ecological niches known to favor metabolic rate modifications (e.g., cryptobiosis) in biological organisms. Specifically, examples of survival to extreme physical parameters by small multi-cellular animals (e.g., tardigrades) are discussed, opening further considerations about the possibility to reversibly slow or temporarily arrest the metabolic activity rates of defined complex organisms in controlled conditions. Key examples of biological organism adaptation capabilities to extreme environmental parameters finally enabled a discussion about the emergence of early primordial biological lifeforms, from natural biotechnology and evolutionary points of view. Overall, the provided examples/similarities confirm the interest in further transposing natural processes and phenomena to controlled laboratory settings with the ultimate goal of gaining better control and modulation capacities over the metabolic activities of complex biological organisms.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en