A Stochastic Model for Particle Deposition in Turbulent Flows and Clogging Effects

Fiche du document

Date

2014

Discipline
Type de document
Périmètre
Langue
Identifiant
Collection

Persée

Organisation

MESR

Licence

Copyright PERSEE 2003-2023. Works reproduced on the PERSEE website are protected by the general rules of the Code of Intellectual Property. For strictly private, scientific or teaching purposes excluding all commercial use, reproduction and communication to the public of this document is permitted on condition that its origin and copyright are clearly mentionned.




Citer ce document

Céline Caruyer et al., « A Stochastic Model for Particle Deposition in Turbulent Flows and Clogging Effects », Journées de l'hydraulique, ID : 10670/1.p94lf6


Métriques


Partage / Export

Résumé En

Particle deposition in turbulent flows is a phenomenon which can lead to fouling and affect normal operating conditions of key components of industrial processes. To explain the deposition mechanisms and predict the deposition rate, several models have been proposed in the literature. The model presented in this paper is based on a stochastic Lagrangian approach, where each particle is explicitly tracked, and where the velocity of the flow seen by particles is modeled by a stochastic process which depends on the mean fluid properties at particle locations. The interactions between particles and near-wall coherent structures are taken into account. Recent developments have shown that the model is not only able to reproduce single-particle deposition and resuspension but can also be applied to simulate the formation and the growth of multilayer deposits. Such deposits result from the competition between particle-fluid, particle-surface and particle-particle interactions. Different morphologies of the deposit (monolayer, dentrites, multilayer) can exist according to the chemical properties of the particles and wall. A porous medium approach is used to take into account the effect of the deposit formed on the flow to obtain more realistic evolution.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en