A subordinated CIR intensity model with application to Wrong-Way risk CVA

Metadatas

Date

January 17, 2018

Identifier
Source

arXiv

Collection

arXiv

Organization

Cornell University


Keywords

Quantitative Finance - Mathematical Finance

Similar subjects En

Pattern Model

Cite this document

Cheikh Mbaye et al., « A subordinated CIR intensity model with application to Wrong-Way risk CVA », arXiv, ID : 10670/1.farh72


Metrics


Share / Export

Abstract 0

Credit Valuation Adjustment (CVA) pricing models need to be both flexible and tractable. The survival probability has to be known in closed form (for calibration purposes), the model should be able to fit any valid Credit Default Swap (CDS) curve, should lead to large volatilities (in line with CDS options) and finally should be able to feature significant Wrong-Way Risk (WWR) impact. The Cox-Ingersoll-Ross model (CIR) combined with independent positive jumps and deterministic shift (JCIR++) is a very good candidate : the variance (and thus covariance with exposure, i.e. WWR) can be increased with the jumps, whereas the calibration constraint is achieved via the shift. In practice however, there is a strong limit on the model parameters that can be chosen, and thus on the resulting WWR impact. This is because only non-negative shifts are allowed for consistency reasons, whereas the upwards jumps of the JCIR++ need to be compensated by a downward shift. To limit this problem, we consider the two-side jump model recently introduced by Mendoza-Arriaga \& Linetsky, built by time-changing CIR intensities. In a multivariate setup like CVA, time-changing the intensity partly kills the potential correlation with the exposure process and destroys WWR impact. Moreover, it can introduce a forward looking effect that can lead to arbitrage opportunities. In this paper, we use the time-changed CIR process in a way that the above issues are avoided. We show that the resulting process allows to introduce a large WWR effect compared to the JCIR++ model. The computation cost of the resulting Monte Carlo framework is reduced by using an adaptive control variate procedure.

document thumbnail

From the same authors

On the same subjects

Within the same disciplines

Export in