Exploitation des statistiques structurelles d'une image pour la prédiction de la saillance visuelle et de la qualité perçue Use of image structural statistics for prediction of visual saliency and perceived quality Fr En

Metadatas

Date

December 11, 2012

Language
Identifier
Collection

Theses.fr

Organization

ABES


Keywords

Points d'intérêt Saillance visuelle Métrique de qualité Métrique à référence réduite Qualité d'expérience (QoE) Statistiques de l'image Interest points Visual saliency Quality metric Reduced reference metric Quality of experience (QoE) Image statistics 006.6

Similar subjects Fr

image-représentation

Cite this document

Michaël Nauge, « Use of image structural statistics for prediction of visual saliency and perceived quality », Theses.fr, ID : 10670/1.uru7sj


Metrics


Share / Export

Abstract Fr En

Dans le domaine de la vision par ordinateur l'utilisation de points d'intérêt (PI) est récurrente pour les problématiques de reconnaissance et de suivi d'objets. Plusieurs études ont prouvé l'utilité de ces techniques, associant robustesse et un temps de calcul pouvant être compatible avec le temps réel. Cette thèse propose d'étudier et d'exploiter ces descripteurs de statistiques de l'image sous un tout autre regard. Ainsi, nous avons menée une étude sur le lien entre les PI et la saillance visuelle humaine. De cette étude nous avons pu développer une méthode de prédiction de carte de saillance exploitant la rapidité d'exécution de ces détecteurs. Nous avons également exploité le pouvoir descriptif de ces PI afin de développer de nouvelles métriques de qualité d'images. Grâce à des résultats encourageant en terme de prédiction de qualité perçue et la faible quantité d'information utilisée, nous avons pu intégrer notre métrique "QIP" dans une chaîne de transmission d'images sur réseau sans fil de type MIMO. L'ajout de cette métrique permet d'augmenter la qualité d'expérience en garantissant la meilleure qualité malgré les erreurs introduites par la transmission sans fil. Nous avons étendu cette étude, par l'analyse fine des statistiques structurelles de l'image et des migrations d'attributs afin de proposer un modèle générique de prédiction des dégradations. Enfin, nous avons été amenés à conduire diverses expériences psychovisuelles, pour valider les approches proposées ou dans le cadre de la normalisation de nouveaux standards du comité JPEG. Ce qui a mené à développer une application web dédiée à l'utilisation et la comparaison des métriques de qualité d'images.

In the field of computer vision, the use of interest points (IP) is very frequent for objects tracking and recognition. Several studies have demonstrated the usefulness of these techniques, combining robustness and complexity that can be compatible with the real time. This thesis proposes to explore and exploit these image statistical descriptors under a different angle. Thus, we conducted a study on the relationship between IP and human visual saliency. In this study, we developed a method for predicting saliency maps relying on the efficiency of the descriptors. We also used the descriptive power of the PI to develop new metrics for image quality. With encouraging results in terms of prediction of perceived quality and the reduced amount of used information, we were able to integrate our metric "QIP" in an image transmission framework over a MIMO wireless network. The inclusion of this metric can improve the quality of experience by ensuring the best visual quality despite the errors introduced by the wireless transmission. We have extended this study by deeply analyzing structural statistics of the image and migration attributes to provide a generic model for predicting impairments. Finally, we conducted various psychovisual experiments to validate the proposed approaches or to contribute to JPEG standard committee. This led to develop a web application dedicated to the benchmark of image quality metrics.

From the same authors

On the same subjects

Similar documents