Machine Learning for Computer Music Multidisciplinary Research: A Practical Case Study

Fiche du document

Date

2021

Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-70210-6_43

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess



Sujets proches En

Learning, Machine

Citer ce document

Hugo Scurto et al., « Machine Learning for Computer Music Multidisciplinary Research: A Practical Case Study », HALSHS : archive ouverte en Sciences de l’Homme et de la Société, ID : 10.1007/978-3-030-70210-6_43


Métriques


Partage / Export

Résumé En

This paper presents a multidisciplinary case study of practice with machine learning for computer music. It builds on the scientific study of two machine learning models respectively developed for data-driven sound synthesis and interactive exploration. It details how the learning capabilities of the two models were leveraged to design and implement a musical interface focused on embodied musical interaction. It then describes how this interface was employed and applied to the composition and performance of aego, an improvisational piece with interactive sound and image for one performer. We discuss the outputs of our research and creation process, and expose our personal reflections and insights on transdisciplinary research opportunities framed by machine learning for computer music.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en