Modified Causal Forests for Estimating Heterogeneous Causal Effects

Fiche du document

Date

22 décembre 2018

Type de document
Périmètre
Identifiant
  • 1812.09487
Collection

arXiv

Organisation

Cornell University



Sujets proches En

Standard of value

Citer ce document

Michael Lechner, « Modified Causal Forests for Estimating Heterogeneous Causal Effects », arXiv - économie


Partage / Export

Résumé 0

Uncovering the heterogeneity of causal effects of policies and business decisions at various levels of granularity provides substantial value to decision makers. This paper develops new estimation and inference procedures for multiple treatment models in a selection-on-observables framework by modifying the Causal Forest approach suggested by Wager and Athey (2018) in several dimensions. The new estimators have desirable theoretical, computational and practical properties for various aggregation levels of the causal effects. While an Empirical Monte Carlo study suggests that they outperform previously suggested estimators, an application to the evaluation of an active labour market programme shows the value of the new methods for applied research.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines