Cheating with (Recursive) Models

Fiche du document

Date

4 novembre 2019

Type de document
Périmètre
Identifiant
  • 1911.01251
Collection

arXiv

Organisation

Cornell University




Citer ce document

Kfir Eliaz et al., « Cheating with (Recursive) Models », arXiv - économie


Partage / Export

Résumé 0

To what extent can agents with misspecified subjective models predict false correlations? We study an "analyst" who utilizes models that take the form of a recursive system of linear regression equations. The analyst fits each equation to minimize the sum of squared errors against an arbitrarily large sample. We characterize the maximal pairwise correlation that the analyst can predict given a generic objective covariance matrix, subject to the constraint that the estimated model does not distort the mean and variance of individual variables. We show that as the number of variables in the model grows, the false pairwise correlation can become arbitrarily close to one, regardless of the true correlation.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en