App2Check @ ATE_ABSITA 2020: Aspect Term Extraction and Aspect-based Sentiment Analysis

Fiche du document

Date

2020

Discipline
Périmètre
Langue
Identifiant
  • 20.500.13089/1di7
Relations

Ce document est lié à :
https://hdl.handle.net/20.500.13089/1cho

Ce document est lié à :
https://doi.org/10.4000/books.aaccademia

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/isbn/979-12-80136-32-9

Collection

OpenEdition Books

Organisation

OpenEdition

Licences

info:eu-repo/semantics/openAccess , https://creativecommons.org/licenses/by-nc-nd/4.0/



Citer ce document

Emanuele Di Rosa et al., « App2Check @ ATE_ABSITA 2020: Aspect Term Extraction and Aspect-based Sentiment Analysis », Accademia University Press


Partage / Export

Résumé 0

In this paper we describe and present the results of the system we specifically developed and submitted for our participation to the ATE_ABSITA 2020 evaluation campaign on the Aspect Term Extraction (ATE), Aspect-based Sentiment Analysis (ABSA), and Sentiment Analysis (SA) tasks. The official results show that App2Check ranks first in all of the three tasks, reaching a F1 score which is 0.14236 higher than the second best system in the ATE task and 0.11943 higher in the ABSA task; it shows a Root-Mean-Square Error (RMSE) that is 0.13075 lower than the second classified in the SA task.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines