SSN_NLP@SardiStance : Stance Detection from Italian Tweets using RNN and Transformers

Fiche du document

Date

2020

Périmètre
Langue
Identifiant
  • 20.500.13089/1dis
Relations

Ce document est lié à :
https://hdl.handle.net/20.500.13089/1cho

Ce document est lié à :
https://doi.org/10.4000/books.aaccademia

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/isbn/979-12-80136-32-9

Collection

OpenEdition Books

Organisation

OpenEdition

Licences

info:eu-repo/semantics/openAccess , https://creativecommons.org/licenses/by-nc-nd/4.0/


Sujets proches En

Pattern Model

Citer ce document

S. Kayalvizhi et al., « SSN_NLP@SardiStance : Stance Detection from Italian Tweets using RNN and Transformers », Accademia University Press


Partage / Export

Résumé 0

Stance detection refers to the detection of one’s opinion about the target from their statements. The aim of sardistance task is to classify the Italian tweets into classes of favor, against or no feeling towards the target. The task has two sub-tasks : in Task A, the classification has to be done by considering only the textual meaning whereas in Task B the tweets must be classified by considering the contextual information along with the textual meaning. We have presented our solution to detect the stance utilizing only the textual meaning (Task A) using encoder-decoder model and transformers. Among these two approaches, simple transformers have performed better than the encoder-decoder model with an average F1-score of 0.4707.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines