CAPISCO @ CONcreTEXT 2020: (Un)supervised Systems to Contextualize Concreteness with Norming Data

Fiche du document

Date

2020

Discipline
Périmètre
Langue
Identifiant
  • 20.500.13089/1dj6
Relations

Ce document est lié à :
https://hdl.handle.net/20.500.13089/1cho

Ce document est lié à :
https://doi.org/10.4000/books.aaccademia

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/isbn/979-12-80136-32-9

Collection

OpenEdition Books

Organisation

OpenEdition

Licences

info:eu-repo/semantics/openAccess , https://creativecommons.org/licenses/by-nc-nd/4.0/



Citer ce document

Alessandro Bondielli et al., « CAPISCO @ CONcreTEXT 2020: (Un)supervised Systems to Contextualize Concreteness with Norming Data », Accademia University Press


Partage / Export

Résumé 0

This paper describes several approaches to the automatic rating of the concreteness of concepts in context, to approach the EVALITA 2020 “CONcreTEXT” task. Our systems focus on the interplay between words and their surrounding context by (i) exploiting annotated resources, (ii) using BERT masking to find potential substitutes of the target in specific contexts and measuring their average similarity with concrete and abstract centroids, and (iii) automatically generating labelled datasets to fine tune transformer models for regression. All the approaches have been tested both on English and Italian data. Both the best systems for each language ranked second in the task.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines