Simple Data Augmentation for Multilingual NLU in Task Oriented Dialogue Systems

Fiche du document

Date

2020

Discipline
Périmètre
Langue
Identifiant
  • 20.500.13089/1dlc
Relations

Ce document est lié à :
https://hdl.handle.net/20.500.13089/1chq

Ce document est lié à :
https://doi.org/10.4000/books.aaccademia

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/isbn/979-12-80136-33-6

Collection

OpenEdition Books

Organisation

OpenEdition

Licences

info:eu-repo/semantics/openAccess , https://www.openedition.org/12554


Sujets proches En

Dialog

Citer ce document

Samuel Louvan et al., « Simple Data Augmentation for Multilingual NLU in Task Oriented Dialogue Systems », Accademia University Press


Partage / Export

Résumé 0

Data augmentation has shown potential in alleviating data scarcity for Natural Language Understanding (e.g. slot filling and intent classification) in task-oriented dialogue systems. As prior work has been mostly experimented on English datasets, we focus on five different languages, and consider a setting where limited data are available. We investigate the effectiveness of non-gradient based augmentation methods, involving simple text span substitutions and syntactic manipulations. Our experiments show that (i) augmentation is effective in all cases, particularly for slot filling; and (ii) it is beneficial for a joint intent-slot model based on multilingual BERT, both for limited data settings and when full training data is used.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines