Adaptive Random Bandwidth for Inference in CAViaR Models

Fiche du document

Date

2 février 2021

Type de document
Périmètre
Identifiant
  • 2102.01636
Collection

arXiv

Organisation

Cornell University



Sujets proches En

Caviare

Citer ce document

Alain Hecq et al., « Adaptive Random Bandwidth for Inference in CAViaR Models », arXiv - économie


Partage / Export

Résumé 0

This paper investigates the size performance of Wald tests for CAViaR models (Engle and Manganelli, 2004). We find that the usual estimation strategy on test statistics yields inaccuracies. Indeed, we show that existing density estimation methods cannot adapt to the time-variation in the conditional probability densities of CAViaR models. Consequently, we develop a method called adaptive random bandwidth which can approximate time-varying conditional probability densities robustly for inference testing on CAViaR models based on the asymptotic normality of the model parameter estimator. This proposed method also avoids the problem of choosing an optimal bandwidth in estimating probability densities, and can be extended to multivariate quantile regressions straightforward.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines