Incentivized Exploration via Filtered Posterior Sampling

Fiche du document

Date

20 février 2024

Type de document
Périmètre
Identifiant
  • 2402.13338
Collection

arXiv

Organisation

Cornell University



Sujets proches En

Inspection by sampling

Citer ce document

Anand Kalvit et al., « Incentivized Exploration via Filtered Posterior Sampling », arXiv - économie


Partage / Export

Résumé 0

We study "incentivized exploration" (IE) in social learning problems where the principal (a recommendation algorithm) can leverage information asymmetry to incentivize sequentially-arriving agents to take exploratory actions. We identify posterior sampling, an algorithmic approach that is well known in the multi-armed bandits literature, as a general-purpose solution for IE. In particular, we expand the existing scope of IE in several practically-relevant dimensions, from private agent types to informative recommendations to correlated Bayesian priors. We obtain a general analysis of posterior sampling in IE which allows us to subsume these extended settings as corollaries, while also recovering existing results as special cases.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en