The Extreme Points of Fusions

Fiche du document

Date

16 septembre 2024

Type de document
Périmètre
Identifiant
  • 2409.10779
Collection

arXiv

Organisation

Cornell University




Citer ce document

Andreas Kleiner et al., « The Extreme Points of Fusions », arXiv - économie


Partage / Export

Résumé 0

Our work explores fusions, the multidimensional counterparts of mean-preserving contractions and their extreme and exposed points. We reveal an elegant geometric/combinatorial structure for these objects. Of particular note is the connection between Lipschitz-exposed points (measures that are unique optimizers of Lipschitz-continuous objectives) and power diagrams, which are divisions of a space into convex polyhedral ``cells'' according to a weighted proximity criterion. These objects are frequently seen in nature--in cell structures in biological systems, crystal and plant growth patterns, and territorial division in animal habitats--and, as we show, provide the essential structure of Lipschitz-exposed fusions. We apply our results to several questions concerning categorization.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines