Robust Quantile Factor Analysis

Fiche du document

Date

26 janvier 2025

Type de document
Périmètre
Identifiant
  • 2501.15761
Collection

arXiv

Organisation

Cornell University




Citer ce document

Songnian Chen et al., « Robust Quantile Factor Analysis », arXiv - économie


Partage / Export

Résumé 0

We propose a factor model and an estimator of the factors and loadings that are robust to weak factors. The factors can have an arbitrarily weak influence on the mean or quantile of the outcome variable at most quantile levels; each factor only needs to have a strong impact on the outcome's quantile near one unknown quantile level. The estimator for every factor, loading, and common component is asymptotically normal at the $\sqrt{N}$ or $\sqrt{T}$ rate. It does not require the knowledge of whether the factors are weak and how weak they are. We also develop a weak-factor-robust estimator of the number of factors and a consistent selectors of factors of any desired strength of influence on the quantile or mean of the outcome variable. Monte Carlo simulations demonstrate the effectiveness of our methods.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines