Binary Outcome Models with Extreme Covariates: Estimation and Prediction

Fiche du document

Date

21 février 2025

Type de document
Périmètre
Identifiant
  • 2502.16041
Collection

arXiv

Organisation

Cornell University



Sujets proches En

Cauda

Citer ce document

Laura Liu et al., « Binary Outcome Models with Extreme Covariates: Estimation and Prediction », arXiv - économie


Partage / Export

Résumé 0

This paper presents a novel semiparametric method to study the effects of extreme events on binary outcomes and subsequently forecast future outcomes. Our approach, based on Bayes' theorem and regularly varying (RV) functions, facilitates a Pareto approximation in the tail without imposing parametric assumptions beyond the tail. We analyze cross-sectional as well as static and dynamic panel data models, incorporate additional covariates, and accommodate the unobserved unit-specific tail thickness and RV functions in panel data. We establish consistency and asymptotic normality of our tail estimator, and show that our objective function converges to that of a panel Logit regression on tail observations with the log extreme covariate as a regressor, thereby simplifying implementation. The empirical application assesses whether small banks become riskier when local housing prices sharply decline, a crucial channel in the 2007--2008 financial crisis.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines