From What Ifs to Insights: Counterfactuals in Causal Inference vs. Explainable AI

Fiche du document

Date

19 mai 2025

Type de document
Périmètre
Identifiant
  • 2505.13324
Collection

arXiv

Organisation

Cornell University



Sujets proches En

Tsʻeu Tzʻu Ci Tse

Citer ce document

Galit Shmueli et al., « From What Ifs to Insights: Counterfactuals in Causal Inference vs. Explainable AI », arXiv - économie


Partage / Export

Résumé 0

Counterfactuals play a pivotal role in the two distinct data science fields of causal inference (CI) and explainable artificial intelligence (XAI). While the core idea behind counterfactuals remains the same in both fields--the examination of what would have happened under different circumstances--there are key differences in how they are used and interpreted. We introduce a formal definition that encompasses the multi-faceted concept of the counterfactual in CI and XAI. We then discuss how counterfactuals are used, evaluated, generated, and operationalized in CI vs. XAI, highlighting conceptual and practical differences. By comparing and contrasting the two, we hope to identify opportunities for cross-fertilization across CI and XAI.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines