Discriminating Dietary Responses by Combining Transcriptomics and Metabolomics Data in Nutrition Intervention Studies.

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1002/mnfr.202000647

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/33325641

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1613-4133

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_EAEBC87F3D527

Licences

info:eu-repo/semantics/openAccess , CC BY-NC 4.0 , https://creativecommons.org/licenses/by-nc/4.0/




Citer ce document

G. Pimentel et al., « Discriminating Dietary Responses by Combining Transcriptomics and Metabolomics Data in Nutrition Intervention Studies. », Serveur académique Lausannois, ID : 10.1002/mnfr.202000647


Métriques


Partage / Export

Résumé 0

Combining different "omics" data types in a single, integrated analysis may better characterize the effects of diet on human health. The performance of two data integration tools, similarity network fusion tool (SNFtool) and Data Integration Analysis for Biomarker discovery using Latent variable approaches for "Omics" (DIABLO; MixOmics), in discriminating responses to diet and metabolic phenotypes is investigated by combining transcriptomics and metabolomics datasets from three human intervention studies: a postprandial crossover study testing dairy foods (n = 7; study 1), a postprandial challenge study comparing obese and non-obese subjects (n = 13; study 2); and an 8-week parallel intervention study that assessed three diets with variable lipid content on fasting parameters (n = 39; study 3). In study 1, combining datasets using SNF or DIABLO significantly improve sample classification. For studies 2 and 3, the value of SNF integration depends on the dietary groups being compared, while DIABLO discriminates samples well but does not perform better than transcriptomic data alone. The integration of associated "omics" datasets can help clarify the subtle signals observed in nutritional interventions. The performance of each integration tool is differently influenced by study design, size of the datasets, and sample size.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets