Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain.

Fiche du document

Discipline
Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00134-013-3203-6

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/24477453

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1432-1238

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_49D560B907569

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer



Sujets proches En

Cerebrum Mind

Citer ce document

P. Bouzat et al., « Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. », Serveur académique Lausannois, ID : 10.1007/s00134-013-3203-6


Métriques


Partage / Export

Résumé 0

Experimental evidence suggests that lactate is neuroprotective after acute brain injury; however, data in humans are lacking. We examined whether exogenous lactate supplementation improves cerebral energy metabolism in humans with traumatic brain injury (TBI). We prospectively studied 15 consecutive patients with severe TBI monitored with cerebral microdialysis (CMD), brain tissue PO2 (PbtO2), and intracranial pressure (ICP). Intervention consisted of a 3-h intravenous infusion of hypertonic sodium lactate (aiming to increase systemic lactate to ca. 5 mmol/L), administered in the early phase following TBI. We examined the effect of sodium lactate on neurochemistry (CMD lactate, pyruvate, glucose, and glutamate), PbtO2, and ICP. Treatment was started on average 33 ± 16 h after TBI. A mixed-effects multilevel regression model revealed that sodium lactate therapy was associated with a significant increase in CMD concentrations of lactate [coefficient 0.47 mmol/L, 95% confidence interval (CI) 0.31-0.63 mmol/L], pyruvate [13.1 (8.78-17.4) μmol/L], and glucose [0.1 (0.04-0.16) mmol/L; all p < 0.01]. A concomitant reduction of CMD glutamate [-0.95 (-1.94 to 0.06) mmol/L, p = 0.06] and ICP [-0.86 (-1.47 to -0.24) mmHg, p < 0.01] was also observed. Exogenous supplemental lactate can be utilized aerobically as a preferential energy substrate by the injured human brain, with sparing of cerebral glucose. Increased availability of cerebral extracellular pyruvate and glucose, coupled with a reduction of brain glutamate and ICP, suggests that hypertonic lactate therapy has beneficial cerebral metabolic and hemodynamic effects after TBI.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en