The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane.

Fiche du document

Date

2014

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12192-013-0436-9

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/23666745

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1466-1268

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_5C41FF6581760

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer




Citer ce document

A. Finka et al., « The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane. », Serveur académique Lausannois, ID : 10.1007/s12192-013-0436-9


Métriques


Partage / Export

Résumé 0

Land plants need precise thermosensors to timely establish molecular defenses in anticipation of upcoming noxious heat waves. The plasma membrane-embedded cyclic nucleotide-gated Ca(2+) channels (CNGCs) can translate mild variations of membrane fluidity into an effective heat shock response, leading to the accumulation of heat shock proteins (HSP) that prevent heat damages in labile proteins and membranes. Here, we deleted by targeted mutagenesis the CNGCd gene in two Physcomitrella patens transgenic moss lines containing either the heat-inducible HSP-GUS reporter cassette or the constitutive UBI-Aequorin cassette. The stable CNGCd knockout mutation caused a hyper-thermosensitive moss phenotype, in which the heat-induced entry of apoplastic Ca(2+) and the cytosolic accumulation of GUS were triggered at lower temperatures than in wild type. The combined effects of an artificial membrane fluidizer and elevated temperatures suggested that the gene products of CNGCd and CNGCb are paralogous subunits of Ca(2+)channels acting as a sensitive proteolipid thermocouple. Depending on the rate of temperature increase, the duration and intensity of the heat priming preconditions, terrestrial plants may thus acquire an array of HSP-based thermotolerance mechanisms against upcoming, otherwise lethal, extreme heat waves.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en