Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin.

Fiche du document

Date

2017

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molcel.2017.01.026

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/28238653

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1097-4164

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_6CA09AC280525

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer



Citer ce document

F. Bürmann et al., « Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin. », Serveur académique Lausannois, ID : 10.1016/j.molcel.2017.01.026


Métriques


Partage / Export

Résumé 0

SMC proteins support vital cellular processes in all domains of life by organizing chromosomal DNA. They are composed of ATPase "head" and "hinge" dimerization domains and a connecting coiled-coil "arm." Binding to a kleisin subunit creates a closed tripartite ring, whose ∼47-nm-long SMC arms act as barrier for DNA entrapment. Here, we uncover another, more active function of the bacterial Smc arm. Using high-throughput genetic engineering, we resized the arm in the range of 6-60 nm and found that it was functional only in specific length regimes following a periodic pattern. Natural SMC sequences reflect these length constraints. Mutants with improper arm length or peptide insertions in the arm efficiently target chromosomal loading sites and hydrolyze ATP but fail to use ATP hydrolysis for relocation onto flanking DNA. We propose that SMC arms implement force transmission upon nucleotide hydrolysis to mediate DNA capture or loop extrusion.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en