2017
Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molcel.2017.01.026
Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/28238653
Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1097-4164
Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_6CA09AC280525
info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer
F. Bürmann et al., « Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin. », Serveur académique Lausannois, ID : 10.1016/j.molcel.2017.01.026
SMC proteins support vital cellular processes in all domains of life by organizing chromosomal DNA. They are composed of ATPase "head" and "hinge" dimerization domains and a connecting coiled-coil "arm." Binding to a kleisin subunit creates a closed tripartite ring, whose ∼47-nm-long SMC arms act as barrier for DNA entrapment. Here, we uncover another, more active function of the bacterial Smc arm. Using high-throughput genetic engineering, we resized the arm in the range of 6-60 nm and found that it was functional only in specific length regimes following a periodic pattern. Natural SMC sequences reflect these length constraints. Mutants with improper arm length or peptide insertions in the arm efficiently target chromosomal loading sites and hydrolyze ATP but fail to use ATP hydrolysis for relocation onto flanking DNA. We propose that SMC arms implement force transmission upon nucleotide hydrolysis to mediate DNA capture or loop extrusion.