Plasma triacylglycerols are biomarkers of β-cell function in mice and humans.

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molmet.2021.101355

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/34634522

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/2212-8778

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_F588B3D1D1162

Licences

info:eu-repo/semantics/openAccess , CC BY-NC-ND 4.0 , https://creativecommons.org/licenses/by-nc-nd/4.0/




Citer ce document

A.R. Sánchez-Archidona et al., « Plasma triacylglycerols are biomarkers of β-cell function in mice and humans. », Serveur académique Lausannois, ID : 10.1016/j.molmet.2021.101355


Métriques


Partage / Export

Résumé 0

To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic β-cell deregulations or defects in the function of insulin target tissues. We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the β-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. TAGs emerge as biomarkers of a liver-to-β-cell axis that links hepatic β-oxidation to β-cell functional mass and insulin secretion.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en