Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens.

Fiche du document

Date

14 décembre 2022

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-022-35378-z

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/36517508

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/2041-1723

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_C3372ED961AB3

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/




Citer ce document

S. Srivatsa et al., « Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens. », Serveur académique Lausannois, ID : 10.1038/s41467-022-35378-z


Métriques


Partage / Export

Résumé 0

The development of cancer therapies is limited by the availability of suitable drug targets. Potential candidate drug targets can be identified based on the concept of synthetic lethality (SL), which refers to pairs of genes for which an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations is lethal to the cell. Here, we present SLIdR (Synthetic Lethal Identification in R), a statistical framework for identifying SL pairs from large-scale perturbation screens. SLIdR successfully predicts SL pairs even with small sample sizes while minimizing the number of false positive targets. We apply SLIdR to Project DRIVE data and find both established and potential pan-cancer and cancer type-specific SL pairs consistent with findings from literature and drug response screening data. We experimentally validate two predicted SL interactions (ARID1A-TEAD1 and AXIN1-URI1) in hepatocellular carcinoma, thus corroborating the ability of SLIdR to identify potential drug targets.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets