HENA, heterogeneous network-based data set for Alzheimer's disease.

Fiche du document

Date

14 août 2019

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41597-019-0152-0

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/31413325

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/2052-4463

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_7ED2F96C23854

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/



Citer ce document

E. Sügis et al., « HENA, heterogeneous network-based data set for Alzheimer's disease. », Serveur académique Lausannois, ID : 10.1038/s41597-019-0152-0


Métriques


Partage / Export

Résumé 0

Alzheimer's disease and other types of dementia are the top cause for disabilities in later life and various types of experiments have been performed to understand the underlying mechanisms of the disease with the aim of coming up with potential drug targets. These experiments have been carried out by scientists working in different domains such as proteomics, molecular biology, clinical diagnostics and genomics. The results of such experiments are stored in the databases designed for collecting data of similar types. However, in order to get a systematic view of the disease from these independent but complementary data sets, it is necessary to combine them. In this study we describe a heterogeneous network-based data set for Alzheimer's disease (HENA). Additionally, we demonstrate the application of state-of-the-art graph convolutional networks, i.e. deep learning methods for the analysis of such large heterogeneous biological data sets. We expect HENA to allow scientists to explore and analyze their own results in the broader context of Alzheimer's disease research.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines