A Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN).

Fiche du document

Date

23 mai 2022

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-10335-4

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/35606398

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/2045-2322

Ce document est lié à :
info:eu-repo/grantAgreement/SNF//182602///

Ce document est lié à :
info:eu-repo/grantAgreement/SNF//173129///

Ce document est lié à :
info:eu-repo/grantAgreement/EC/////

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_9F910B893D7D3

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/



Sujets proches En

Resonance, Magnetic

Citer ce document

H. Lajous et al., « A Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN). », Serveur académique Lausannois, ID : 10.1038/s41598-022-10335-4


Métriques


Partage / Export

Résumé 0

Accurate characterization of in utero human brain maturation is critical as it involves complex and interconnected structural and functional processes that may influence health later in life. Magnetic resonance imaging is a powerful tool to investigate equivocal neurological patterns during fetal development. However, the number of acquisitions of satisfactory quality available in this cohort of sensitive subjects remains scarce, thus hindering the validation of advanced image processing techniques. Numerical phantoms can mitigate these limitations by providing a controlled environment with a known ground truth. In this work, we present FaBiAN, an open-source Fetal Brain magnetic resonance Acquisition Numerical phantom that simulates clinical T2-weighted fast spin echo sequences of the fetal brain. This unique tool is based on a general, flexible and realistic setup that includes stochastic fetal movements, thus providing images of the fetal brain throughout maturation comparable to clinical acquisitions. We demonstrate its value to evaluate the robustness and optimize the accuracy of an algorithm for super-resolution fetal brain magnetic resonance imaging from simulated motion-corrupted 2D low-resolution series compared to a synthetic high-resolution reference volume. We also show that the images generated can complement clinical datasets to support data-intensive deep learning methods for fetal brain tissue segmentation.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en