Sex-Chromosome Homomorphy in Palearctic Tree Frogs Results from Both Turnovers and X-Y Recombination.

Fiche du document

Date

2015

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1093/molbev/msv113

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/25957317

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1537-1719

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_1522FEFFC6379

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer




Citer ce document

C. Dufresnes et al., « Sex-Chromosome Homomorphy in Palearctic Tree Frogs Results from Both Turnovers and X-Y Recombination. », Serveur académique Lausannois, ID : 10.1093/molbev/msv113


Métriques


Partage / Export

Résumé 0

Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X-Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (∼ 5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X-Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en