Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction.

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1126/sciadv.aba8271

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/32923630

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/2375-2548

Ce document est lié à :
info:eu-repo/grantAgreement/SNF/Projects/310030-182332///

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_5C5D2D2462251

Licences

info:eu-repo/semantics/openAccess , CC BY-NC 4.0 , https://creativecommons.org/licenses/by-nc/4.0/


Sujets proches En

Neurocytes Nerve cells

Citer ce document

E. Motori et al., « Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. », Serveur académique Lausannois, ID : 10.1126/sciadv.aba8271


Métriques


Partage / Export

Résumé 0

Neurodegeneration in mitochondrial disorders is considered irreversible because of limited metabolic plasticity in neurons, yet the cell-autonomous implications of mitochondrial dysfunction for neuronal metabolism in vivo are poorly understood. Here, we profiled the cell-specific proteome of Purkinje neurons undergoing progressive OXPHOS deficiency caused by disrupted mitochondrial fusion dynamics. We found that mitochondrial dysfunction triggers a profound rewiring of the proteomic landscape, culminating in the sequential activation of precise metabolic programs preceding cell death. Unexpectedly, we identified a marked induction of pyruvate carboxylase (PCx) and other anaplerotic enzymes involved in replenishing tricarboxylic acid cycle intermediates. Suppression of PCx aggravated oxidative stress and neurodegeneration, showing that anaplerosis is protective in OXPHOS-deficient neurons. Restoration of mitochondrial fusion in end-stage degenerating neurons fully reversed these metabolic hallmarks, thereby preventing cell death. Our findings identify a previously unappreciated pathway conferring resilience to mitochondrial dysfunction and show that neurodegeneration can be reversed even at advanced disease stages.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en