CrowdGO: Machine learning and semantic similarity guided consensus Gene Ontology annotation.

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1010075

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/35560159

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1553-7358

Ce document est lié à :
info:eu-repo/grantAgreement/SNF/Careers/PP00P3_170664///

Ce document est lié à :
info:eu-repo/grantAgreement/SNF/Careers/PP00P3_202669///

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_4EB542E53FA19

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/




Citer ce document

MJMF Reijnders et al., « CrowdGO: Machine learning and semantic similarity guided consensus Gene Ontology annotation. », Serveur académique Lausannois, ID : 10.1371/journal.pcbi.1010075


Métriques


Partage / Export

Résumé 0

Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community's best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en