Barcoding human physical activity to assess chronic pain conditions.

Fiche du document

Date

2012

Discipline
Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0032239

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/22384191

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1932-6203

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_14FA205EE5009

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer


Sujets proches En

Persistent pain

Citer ce document

A. Paraschiv-Ionescu et al., « Barcoding human physical activity to assess chronic pain conditions. », Serveur académique Lausannois, ID : 10.1371/journal.pone.0032239


Métriques


Partage / Export

Résumé 0

BACKGROUND: Modern theories define chronic pain as a multidimensional experience - the result of complex interplay between physiological and psychological factors with significant impact on patients' physical, emotional and social functioning. The development of reliable assessment tools capable of capturing the multidimensional impact of chronic pain has challenged the medical community for decades. A number of validated tools are currently used in clinical practice however they all rely on self-reporting and are therefore inherently subjective. In this study we show that a comprehensive analysis of physical activity (PA) under real life conditions may capture behavioral aspects that may reflect physical and emotional functioning.¦METHODOLOGY: PA was monitored during five consecutive days in 60 chronic pain patients and 15 pain-free healthy subjects. To analyze the various aspects of pain-related activity behaviors we defined the concept of PA 'barcoding'. The main idea was to combine different features of PA (type, intensity, duration) to define various PA states. The temporal sequence of different states was visualized as a 'barcode' which indicated that significant information about daily activity can be contained in the amount and variety of PA states, and in the temporal structure of sequence. This information was quantified using complementary measures such as structural complexity metrics (information and sample entropy, Lempel-Ziv complexity), time spent in PA states, and two composite scores, which integrate all measures. The reliability of these measures to characterize chronic pain conditions was assessed by comparing groups of subjects with clinically different pain intensity.¦CONCLUSION: The defined measures of PA showed good discriminative features. The results suggest that significant information about pain-related functional limitations is captured by the structural complexity of PA barcodes, which decreases when the intensity of pain increases. We conclude that a comprehensive analysis of daily-life PA can provide an objective appraisal of the intensity of pain.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en