Computational modeling of resting-state activity demonstrates markers of normalcy in children with prenatal or perinatal stroke.

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.4560-14.2015

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/26063923

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/eissn/1529-2401

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_29E87B0181729

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer



Sujets proches En

Cerebrum Mind

Citer ce document

M.H. Adhikari et al., « Computational modeling of resting-state activity demonstrates markers of normalcy in children with prenatal or perinatal stroke. », Serveur académique Lausannois, ID : 10.1523/JNEUROSCI.4560-14.2015


Métriques


Partage / Export

Résumé 0

Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en