CACTUS: a computational framework for generating realistic white matter microstructure substrates.

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.3389/fninf.2023.1208073

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/37603781

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pissn/1662-5196

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_C2B0DFB109EF1

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/




Citer ce document

R. Gardier et al., « CACTUS: a computational framework for generating realistic white matter microstructure substrates. », Serveur académique Lausannois, ID : 10.3389/fninf.2023.1208073


Métriques


Partage / Export

Résumé 0

Monte-Carlo diffusion simulations are a powerful tool for validating tissue microstructure models by generating synthetic diffusion-weighted magnetic resonance images (DW-MRI) in controlled environments. This is fundamental for understanding the link between micrometre-scale tissue properties and DW-MRI signals measured at the millimetre-scale, optimizing acquisition protocols to target microstructure properties of interest, and exploring the robustness and accuracy of estimation methods. However, accurate simulations require substrates that reflect the main microstructural features of the studied tissue. To address this challenge, we introduce a novel computational workflow, CACTUS (Computational Axonal Configurator for Tailored and Ultradense Substrates), for generating synthetic white matter substrates. Our approach allows constructing substrates with higher packing density than existing methods, up to 95% intra-axonal volume fraction, and larger voxel sizes of up to 500μm 3 with rich fibre complexity. CACTUS generates bundles with angular dispersion, bundle crossings, and variations along the fibres of their inner and outer radii and g-ratio. We achieve this by introducing a novel global cost function and a fibre radial growth approach that allows substrates to match predefined targeted characteristics and mirror those reported in histological studies. CACTUS improves the development of complex synthetic substrates, paving the way for future applications in microstructure imaging.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets