Geant4-DNA Modeling of Water Radiolysis beyond the Microsecond: An On-Lattice Stochastic Approach

Fiche du document

Date

2 juin 2021

Type de document
Périmètre
Langue
Identifiant
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.3390/ijms22116023

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/34199598

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pissn/1422-0067

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_B4DB874F3FC98

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/



Sujets proches En

Pattern Model

Citer ce document

Hoang Ngoc Tran et al., « Geant4-DNA Modeling of Water Radiolysis beyond the Microsecond: An On-Lattice Stochastic Approach », Serveur académique Lausannois, ID : 10.3390/ijms22116023


Métriques


Partage / Export

Résumé 0

In this work, we use the next sub-volume method (NSM) to investigate the possibility of using the compartment-based ("on-lattice") model to simulate water radiolysis. We, first, start with a brief description of the reaction-diffusion master equation (RDME) in a spatially discretized simulation volume ("mesh"), which is divided into sub-volumes (or "voxels"). We then discuss the choice of voxel size and merging technique of a given mesh, along with the evolution of the system using the hierarchical algorithm for the RDME ("hRDME"). Since the compartment-based model cannot describe high concentration species of early radiation-induced spurs, we propose a combination of the particle-based step-by-step ("SBS") Brownian dynamics model and the compartment-based model ("SBS-RDME model") for the simulation. We, finally, use the particle-based SBS Brownian dynamics model of Geant4-DNA as a reference to test the model implementation through several benchmarks. We find that the compartment-based model can efficiently simulate the system with a large number of species and for longer timescales, beyond the microsecond, with a reasonable computing time. Our aim in developing this model is to study the production and evolution of reactive oxygen species generated under irradiation with different dose rate conditions, such as in FLASH and conventional radiotherapy.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en