Nanomotion Spectroscopy as a New Approach to Characterize Bacterial Virulence.

Fiche du document

Date

21 juillet 2021

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.3390/microorganisms9081545

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pmid/34442624

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/pissn/2076-2607

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_2B3670B3C1DA4

Licences

info:eu-repo/semantics/openAccess , CC BY 4.0 , https://creativecommons.org/licenses/by/4.0/



Sujets proches En

Pertussis

Citer ce document

M.I. Villalba et al., « Nanomotion Spectroscopy as a New Approach to Characterize Bacterial Virulence. », Serveur académique Lausannois, ID : 10.3390/microorganisms9081545


Métriques


Partage / Export

Résumé 0

Atomic force microscopy (AFM)-based nanomotion detection is a label-free technique that has been used to monitor the response of microorganisms to antibiotics in a time frame of minutes. The method consists of attaching living organisms onto an AFM cantilever and in monitoring its nanometric scale oscillations as a function of different physical-chemical stimuli. Up to now, we only used the cantilever oscillations variance signal to assess the viability of the attached organisms. In this contribution, we demonstrate that a more precise analysis of the motion pattern of the cantilever can unveil relevant medical information about bacterial phenotype. We used B. pertussis as the model organism, it is a slowly growing Gram-negative bacteria which is the agent of whooping cough. It was previously demonstrated that B. pertussis can expresses different phenotypes as a function of the physical-chemical properties of the environment. In this contribution, we highlight that B. pertussis generates a cantilever movement pattern that depends on its phenotype. More precisely, we noticed that nanometric scale oscillations of B. pertussis can be correlated with the virulence state of the bacteria. The results indicate a correlation between metabolic/virulent bacterial states and bacterial nanomotion pattern and paves the way to novel rapid and label-free pathogenic microorganism detection assays.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en