La physique continue

Fiche du document

Date

2009

Discipline
Type de document
Périmètre
Langue
Identifiant
Source

Intellectica

Collection

Persée

Organisation

MESR

Licence

Copyright PERSEE 2003-2023. Works reproduced on the PERSEE website are protected by the general rules of the Code of Intellectual Property. For strictly private, scientific or teaching purposes excluding all commercial use, reproduction and communication to the public of this document is permitted on condition that its origin and copyright are clearly mentionned.




Citer ce document

Marc Lachièze-Rey, « La physique continue », Intellectica, ID : 10.3406/intel.2009.1740


Métriques


Partage / Export

Résumé En Fr

The continuity of physics. The Newtonian physics introduces continuous space and time, but considers matter, under the form of corpuscles, as discontinuous. The theories of relativity also represent the space-time as a continuum. The nature of light was discussed since before the XVIIth century : is it made of particles, as suggested by Newton, or of waves ? The latter conception, however, involved an electromagnetic ether whose properties remained elusive. This was the electromagnetic version of the continuous / discontinuous opposition. At the beginning of the XIXth century, interferometry suggested to see the light as a wave, more precisely as an electromagnetic wave. This appeared as a victory of the continuous vision. But in the beginning of the XXth century, the quantum revolution introduced a completely new vision which discarded both [classical] waves and corpuscles for the light : it is now described by new entities, wave functions or quantum fields. Subsequently, it appeared that the same applied to matter. In some sense, this resolved the debate by showing that continuity and discreteness (under the form of quantization) were both present in matter and radiation. From the mathematical point of view, this situation could be described either geometrically, through non commutative geometry or algebraically with the help of operators. This was not the end of the story. Various arguments suggest that our present description of the nature is not satisfactory, and that we must search for a more complete and unified physical theory. Most physicists estimate that it should involve, in one form or an other, a quantization of gravitation, that may be provided by a quantization of geometry itself. This motivates an important part of present research, which considers various approaches like quantum geometry, loop quantum gravity, spin networks and causal networks, dynamical triangulations. Each of them introduces new conceptions of space and time, were these entities also appear as quantified : like matter in the original quantum theory, they incorporate continuous and discontinuous characteristics. We do not know by now what will be the best theory. Work is in progress.

La physique newtonienne introduit un espace et un temps continus, mais considère la matière, décrite en termes corpusculaires, comme discontinue. Les théories de la relativité représentent aussi l'espace-temps comme un continuum. La nature de la lumière a été source de discussions depuis avant le XVIIème siècle : est-elle constituée de particules, comme le suggérait Newton, ou bien d'ondes ? Cette dernière conception impliquait cependant l'existence d'un éther électromagnétique, dont les propriétés restaient indéterminées. Telle était la version électromagnétique du débat continu / discontinu. Au début du XIXème siècle, l'interférométrie suggéra de considérer la lumière comme une onde, plus précisément une onde électromagnétique : une victoire de la vision continue. Mais au début du XIXème siècle, la révolution quantique introduisit une vision entièrement nouvelle, qui rendit caduque les descriptions de la lumière en termes d'ondes [classiques] ou de particules. Il fallait la décrire par de nouvelles entités, fonctions d'onde ou champs quantiques. Il apparut ensuite que l'on devait décrire la matière de la même manière. Dans un sens, le débat continu / discontinu était résolu : les deux aspects étaient présents dans la matière ou dans le rayonnement, tous deux quantifiés. Du point de vue mathématique, la situation peut être décrite géométriquement, sous forme de la géométrie non commutative, ou bien algébriquement, par l'emploi d'opérateurs. L'histoire ne se termine pas là. Différents arguments suggèrent que notre description actuelle de la nature n'est pas satisfaisante, et que nous devons chercher une théorie physique plus complète et plus unifiée. La plupart des physiciens estiment qu'elle doit impliquer une quantification de la gravitation, sous une forme ou sous une autre. Celle-ci pourrait se présenter comme une quantification de la géométrie elle-même. Ceci motive une grande part de la recherche actuelle en physique fondamentale, qui considère différentes approches : géométrie quantique, gravité en boucles, réseaux de spin ou réseaux causaux, triangulation dynamiques ... Chacune introduit de nouvelles conceptions de l'espace et du temps, ou ces entités géométriques apparaissent quantifiées ; comme la matière dans la théorie quantique originale, elles incorporent des caractéristiques continues et discontinues. Nous ne savons pas si l'une de ces théories se révélera adéquate. Les travaux continuent.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en