Calcul différentiel neuronal et architectures fonctionnelles

Fiche du document

Auteur
Date

2018

Discipline
Type de document
Périmètre
Langue
Identifiant
Source

Intellectica

Collection

Persée

Organisation

MESR

Licence

Copyright PERSEE 2003-2023. Works reproduced on the PERSEE website are protected by the general rules of the Code of Intellectual Property. For strictly private, scientific or teaching purposes excluding all commercial use, reproduction and communication to the public of this document is permitted on condition that its origin and copyright are clearly mentionned.




Citer ce document

Jean Petitot, « Calcul différentiel neuronal et architectures fonctionnelles », Intellectica, ID : 10.3406/intel.2018.1883


Métriques


Partage / Export

Résumé En Fr

Neural Differential Calculus and Functional Architectures. The paper starts with a basic presentation of Neurogeometry as geometrizing the connectivity of primary visual areas by means of concepts of modern differential geometry. The retinotopic parameterization of orientation (OR) hypercolumns in area V1 by positions in the retina can be interpreted as a fibre bundle, namely the fibration of 1-jets of planar curves. The functional architecture defined on V1 by the cortico-cortical connections between OR hypercolumns can then be interpreted as the canonical contact structure of the 1-jets fibre bundle. The paper presents next the pinwheel structure of OR maps with their singularities. The existence of a characteristic mesh of the network of pinwheels corresponds to the fact that the OR field is a solution of the Helmholtz equation. The concepts of a phase field and of a Gaussian field can consequently be applied to the statistics of pinwheels. Lastly, the paper focuses on the relations between the pinwheels of OR maps and the fractures of direction (DR) maps. It presents a neurogeometrical model of beautiful empirical results from Nicholas Swindale. In this model, one takes into account not only preferred ORs and DRs but also the tuning curves of which they are peaks. The spatial layout of DRs with their singularities (fractures ending at pinwheels) is then modeled by a universal unfolding (in Thom's sense) of tuning curves.

L'article présente d'abord les bases de la neurogéométrie comme géométrisation de la connectivité des aires visuelles primaires en termes de géométrie différentielle moderne. La paramétrisation rétinotopique des hypercolonnes d'orientation (OR) de l'aire V1 par les positions dans la rétine s'interprète comme une fibration, celle des 1-jets des courbes planes. L'architecture fonctionnelle définie sur V1 par les connexions cortico-corticales entre hypercolonnes d'OR s'interprète alors comme la structure de contact canonique de l'espace des 1-jets. L'article se focalise ensuite sur l'organisation des cartes d'OR en pinwheels centrés sur des singularités. L'existence d'une longueur caractéristique du réseau des pinwheels s'interprète comme le fait que le champ des OR est une solution de l'équation d'Helmholtz. On peut appliquer les concepts de champ de phases et de champ gaussien pour rendre compte de la statistique des pinwheels. L'article se focalise enfin sur les liens entre les pinwheels des cartes d'OR et les fractures des cartes de direction (DR). Il propose une modélisation neurogéométrique de résultats empiriques précis dus à Nicholas Swindale. Dans ce modèle, on tient compte non seulement des OR et des DR préférentielles, mais également des courbes de réponse dont elles sont les pics. Le “ spatial layout” des DR avec leurs singularités (fractures se terminant sur des pinwheels) s'interprète alors comme un déploiement universel (au sens de Thom) des courbes de réponse.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en