Detecting Hate Speech Against Women in English Tweets

Fiche du document

Date

5 juin 2019

Discipline
Périmètre
Langue
Identifiants
Collection

OpenEdition Books

Organisation

OpenEdition

Licences

https://creativecommons.org/licenses/by-nc-nd/4.0/ , info:eu-repo/semantics/openAccess




Citer ce document

Resham Ahluwalia et al., « Detecting Hate Speech Against Women in English Tweets », Accademia University Press, ID : 10.4000/books.aaccademia.4698


Métriques


Partage / Export

Résumé En It

Hate speech is prevalent in social media platforms. Systems that can automatically detect offensive content are of great value to assist human curators with removal of hateful language. In this paper, we present machine learning models developed at UW Tacoma for detection of misogyny, i.e. hate speech against women, in English tweets, and the results obtained with these models in the shared task for Automatic Misogyny Identification (AMI) at EVALITA2018.

Commenti offensivi nei confronti di persone con diversa orientazione sessuale o provenienza sociale sono oggigiorno prevalenti nelle piattaforme di social media. A tale fine, sistemi automatici in grado di rilevare contenuti offensivi nei confronti di alcuni gruppi sociali sono importanti per facilitare il lavoro dei moderatori di queste piattaforme a rimuovere ogni commento offensivo usato nei social media. In questo articolo, vi presentiamo sia dei modelli di apprendimento automatico sviluppati all’Università di Washington in Tacoma per il rilevamento della misoginia, ovvero discorsi offensivi usati nei tweet in lingua inglese contro le donne, sia i risultati ottenuti con questi modelli nel processo per l’identificazione automatica della misoginia in EVALITA2018.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines

Exporter en