Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and risk-averse expected utilities

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mathsocsci.2015.10.007

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess




Citer ce document

Thai Ha-Huy et al., « Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and risk-averse expected utilities », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1016/j.mathsocsci.2015.10.007


Métriques


Partage / Export

Résumé En

We consider a model with an infinite number of states of nature, von Neumann–Morgenstern utilities, where agents have different probability beliefs and where short sells are allowed. We show that no-arbitrage conditions, defined for finite dimensional asset markets models, are not sufficient to ensure existence of equilibrium in presence of an infinite number of states of nature. However, if the individually rational utility set U is compact, we obtain an equilibrium. We give conditions which imply the compactness of U. We give examples of non-existence of equilibrium when these conditions do not hold.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines