Adaptive estimation in the linear random coefficients model when regressors have limited variation

Fiche du document

Date

2021

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00041-021-09875-6

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess


Sujets proches En

Pattern Model

Citer ce document

Christophe Gaillac et al., « Adaptive estimation in the linear random coefficients model when regressors have limited variation », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1007/s00041-021-09875-6


Métriques


Partage / Export

Résumé En

We consider a linear model where the coecients - intercept and slopes - are random and independent from regressors which support is a proper subset. When the slopes do not have heavy tails, the joint density of the random coecients is identied. Lower bounds on the supremum risk for the estimation of the density are derived for this model and a related white noise model. We present an estimator, its rates of convergence, and a data-driven rule which delivers adaptive estimators.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines