Adaptive estimation in the linear random coefficients model when regressors have limited variation

Fiche du document

Date

18 juin 2020

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/arxiv/1905.06584

Ce document est lié à :
info:eu-repo/grantAgreement/EC/FP7/337665/EU/Parsimony and operator methods for treatment of endogeneity and multiple sources of unobserved heterogeneity/POEMH

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess



Sujets proches En

Pattern Model

Citer ce document

Christophe Gaillac et al., « Adaptive estimation in the linear random coefficients model when regressors have limited variation », HAL SHS (Sciences de l’Homme et de la Société), ID : 10670/1.1a090c...


Métriques


Partage / Export

Résumé 0

We consider a linear model where the coefficients - intercept and slopes - are random with a law in a nonparametric class and independent from the regressors. Identification often requires the regressors to have a support which is the whole space. This is hardly ever the case in practice. Alternatively, the coefficients can have a compact support but this is not compatible with unbounded error terms as usual in regression models. In this paper, the regressors can have a support which is a proper subset but the slopes (not the intercept) do not have heavy-tails. Lower bounds on the supremum risk for the estimation of the joint density of the random coefficients density are obtained for a wide range of smoothness, where some allow for polynomial and nearly parametric rates of convergence. We present a minimax optimal estimator, a data-driven rule for adaptive estimation, and made available a R package.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines