Augmenting the availability of historical GDP per capita estimates through machine learning

Fiche du document

Date

16 septembre 2024

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2402060121

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess


Sujets proches En

Estimates and cost

Citer ce document

Philipp Koch et al., « Augmenting the availability of historical GDP per capita estimates through machine learning », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1073/pnas.2402060121


Métriques


Partage / Export

Résumé En

Can we use data on the biographies of historical figures to estimate the GDP per capita of countries and regions? Here, we introduce a machine learning method to estimate the GDP per capita of dozens of countries and hundreds of regions in Europe and North America for the past seven centuries starting from data on the places of birth, death, and occupations of hundreds of thousands of historical figures. We build an elastic net regression model to perform feature selection and generate out-of-sample estimates that explain 90% of the variance in known historical income levels. We use this model to generate GDP per capita estimates for countries, regions, and time periods for which these data are not available and externally validate our estimates by comparing them with four proxies of economic output: urbanization rates in the past 500 y, body height in the 18th century, well-being in 1850, and church building activity in the 14th and 15th century. Additionally, we show our estimates reproduce the well-known reversal of fortune between southwestern and northwestern Europe between 1300 and 1800 and find this is largely driven by countries and regions engaged in Atlantic trade. These findings validate the use of fine-grained biographical data as a method to augment historical GDP per capita estimates. We publish our estimates with CI together with all collected source data in a comprehensive dataset.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines