In a previous article, we discussed a paradox in Timaeus’ cosmology: that there is no void inside the universe, even though it is entirely filled with polyhedra—a mathematical impossibility (Brisson-Ofman 2025). In the present article, we examine another paradox. While the first paradox is well known and was already highlighted by Aristotle as a fundamental mathematical contradiction undermining Plato’s cosmology, this new paradox has gone almost entirely unnoticed by commentators, both ancient and modern. This oversight may surprise scholars, given the extensive body of work on Timaeus’ universe, much of which emphasizes discrepancies with astronomical observations or points out supposed internal contradictions. Like the first paradox, this one arises from the premise of a universe entirely filled with polyhedra. However, in this case, the contradiction stems from the absence of void outside it.In the first section, we demonstrate that the shape of the universe cannot be a perfect mathematical sphere: that is, its boundary is not smooth but exhibits bumps and hollows. Next, we present conceptual arguments from Plato’s text that support the necessity of such ‘defects’ in the universe’s shape compared to a perfect mathematical sphere. In the third section, we argue that such a universe cannot move at all. Finally, we propose a solution to this mathematical contradiction in Timaeus’ construction, drawing on the same ideas used to address the earlier apparent contradiction: the unique feature of Timaeus’ universe as a living being, whose parts are continuously moving, changing, decomposing, and reforming.While this problem does not depend on the various schools of interpretation of the Timaeus, it is related to some important issues concerning Plato’s philosophy. These issues include the importance of observations in science—particularly in astronomy—the relationship between intelligible models and their sensible copies, the mythos/ logos approach of Plato’s cosmology, and the debate ‘metaphorical’ vs ‘literal’ interpretation. Of course, all these questions fall outside the scope of this article and will not be addressed here.
L'univers sphérique du Timée de Platon est formé de polyèdres réguliers. C'est donc une sphère très proche, mais néanmoins nécessairement différente, d'une sphère mathématique parfaite. Nous montrons alors qu'il est impossible pour cette "sphère" de tourner sur elle-même, en contradiction avec un univers en rotation, propriété fondamentale soulignée à plusieurs reprises dans le Timée. Ce paradoxe semble avoir été ignoré , tant par les commentateurs anciens que modernes, à l'exception sans doute d'Aristote. Cela s'explique sans doute lié par la difficulté à représenter un univers qui n'est pas dans l'espace, mais la totalité de l'espace. Après avoir discuté des solutions communes par la négligence ou l'ignorance de Platon, et montré qu'elles sont difficilement soutenables, nous montrons comment cette contradiction trouve sa solution à partir d'une autre propriété essentielle de l'univers du Timée: être un vivant contenant tous les vivants. Ainsi, contrairement à ce qu'il pouvait sembler, loin de constituer un argument en faveur de l'inconsistance de sa cosmologie, cette nouvelle analyse va dans le sens de sa cohérence globale.