A new clustering method to explore the dynamics of research communities

Fiche du document

Date

2022

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11192-022-04463-x

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess



Sujets proches En

Community

Citer ce document

Jordan Cambe et al., « A new clustering method to explore the dynamics of research communities », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1007/s11192-022-04463-x


Métriques


Partage / Export

Résumé En

Description of temporal networks and detection of dynamic communities have been hot topics of research for the last decade. However, no consensual answers to these challenges have been found due to the complexity of the task. Static communities are not well defined objects, and adding a temporal dimension makes the description even more difficult. In this article, we propose a coherent temporal clustering method to explore the dynamics of research communities: the Best Combination of Local Communities (BCLC). Our method aims at finding a good balance between two contradictory objectives: closely following the short-term evolution by finding optimal partitions at each time step, on the one hand, and temporal smoothing, which privileges historical continuity, on the other hand. We test our algorithm on two bibliographic data sets by comparing their mesoscale dynamic description to those derived from a (static) simple clustering algorithm applied over the whole

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets