Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/arxiv/2011.07920

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijforecast.2022.04.009

Collection

Archives ouvertes

Licences

http://creativecommons.org/licenses/by/ , info:eu-repo/semantics/OpenAccess




Citer ce document

Oren Barkan et al., « Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1016/j.ijforecast.2022.04.009


Métriques


Partage / Export

Résumé En

We present a hierarchical architecture based on recurrent neural networks for predicting disaggregated inflation components of the Consumer Price Index (CPI). While the majority of existing research is focused on predicting headline inflation, many economic and financial institutions are interested in its partial disaggregated components. To this end, we developed the novel Hierarchical Recurrent Neural Network (HRNN) model, which utilizes information from higher levels in the CPI hierarchy to improve predictions at the more volatile lower levels. Based on a large dataset from the US CPI-U index, our evaluations indicate that the HRNN model significantly outperforms a vast array of well-known inflation prediction baselines. Our methodology and results provide additional forecasting measures and possibilities to policy and market makers on sectoral and component-specific price changes.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines