Automatic Mallampati Classification Using Active Appearance Models

Fiche du document

Date

2012

Type de document
Périmètre
Langue
Identifiant
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:ch:serval-BIB_07A9161C7D2A4

Licences

info:eu-repo/semantics/openAccess , Copying allowed only for non-profit organizations , https://serval.unil.ch/disclaimer




Citer ce document

G.L. Cuendet et al., « Automatic Mallampati Classification Using Active Appearance Models », Serveur académique Lausannois, ID : 10670/1.3xtarl


Métriques


Partage / Export

Résumé 0

Difficult tracheal intubation assessment is an important research topic in anesthesia as failed intubations are important causes of mortality in anesthetic practice. The modified Mallampati score is widely used, alone or in conjunction with other criteria, to predict the difficulty of intubation. This work presents an automatic method to assess the modified Mallampati score from an image of a patient with the mouth wide open. For this purpose we propose an active appearance models (AAM) based method and use linear support vector machines (SVM) to select a subset of relevant features obtained using the AAM. This feature selection step proves to be essential as it improves drastically the performance of classification, which is obtained using SVM with RBF kernel and majority voting. We test our method on images of 100 patients undergoing elective surgery and achieve 97.9% accuracy in the leave-one-out crossvalidation test and provide a key element to an automatic difficult intubation assessment system.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Exporter en