A space-time-categorical local linear smoother for predicting land/house price

Fiche du document

Date

15 juin 2017

Type de document
Périmètre
Langue
Identifiants
Collection

Archives ouvertes

Licences

http://creativecommons.org/licenses/by-sa/ , info:eu-repo/semantics/OpenAccess


Mots-clés En

urbansimul


Citer ce document

Ghislain Geniaux et al., « A space-time-categorical local linear smoother for predicting land/house price », HAL SHS (Sciences de l’Homme et de la Société), ID : 10670/1.888d64...


Métriques


Partage / Export

Résumé 0

A new class of data generating processes called MGWR-SAR was recently introduced, in which the regression parameters and the spatial dependence coefficient can vary over the space in order to take into account both spatial heterogeneity and spatial dependence. The estimator corresponds to a local linear smoother with a special kernel based only on Euclidean distance and a linearization of SAR regression using IV/2SLS method. Using simulated data and real price data (land, house), we proved this estimator to be more accurate than estimators integrating exclusively spatial heterogeneity or spatial autocorrelation. However, if any non-linearity exists between covariates, it would require to transform these variables to ensure linear relationship. We propose to improve that estimator using a General Product Kernel adding further smoothed variables to go beyond spatial heterogeneity. Firstly, “time” variable to consider space/time heterogeneity. Secondly, continuous variables to account for their non-linearity,and finally a categorical variable (for example number of rooms, or presence of a garden) to test the relevance of “ad hoc” market segmentation. Using a huge land/house sales spatial database in Provence, we compare prediction accuracy of the BLUP version of several models (OLS,NLS, SAR, SEM, SARAR, MGWR-SAR, REML estimator) against our proposition.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets