A Syllable-Based Prominence Detection Model Based on Discriminant Analysis and Context-Dependency

Fiche du document

Date

2009

Discipline
Type de document
Périmètre
Langue
Identifiants
Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess


Mots-clés Fr

Linguistique

Sujets proches En

Pattern Model

Citer ce document

Nicolas Obin et al., « A Syllable-Based Prominence Detection Model Based on Discriminant Analysis and Context-Dependency », HAL SHS (Sciences de l’Homme et de la Société), ID : 10670/1.89c0ad...


Métriques


Partage / Export

Résumé En

On the basis of our previous work, we propose a syllablebased prominence detection model within the framework of exploratory data analysis and discriminant learning in the acoustic domain. This paper investigates two hypothesis on the acoustic data processing: a linear discriminant analysis in which the relative discriminant ability of single prosodic cues are combined into prosodic patterns and a context-dependant model that accounts for phonological dependencies (phonetic intrinsic properties and coarticulation effect). The proposed approach significantly outperforms a baseline method on a corpus of French read speech with a performance of 87.5% in f-measure for the prominent syllables (respectively 90.4% in global accuracy).

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines