octobre 2004
HALSHS : archive ouverte en Sciences de l’Homme et de la Société - notices sans texte intégral
Ce document est lié à :
info:eu-repo/semantics/altIdentifier/arxiv/0711.2490
Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2004.05.013
info:eu-repo/semantics/OpenAccess
Michel Grabisch, « The Möbius transform on symmetric ordered structures and its application to capacities on finite sets », HALSHS : archive ouverte en Sciences de l’Homme et de la Société - notices sans texte intégral, ID : 10.1016/j.disc.2004.05.013
Considering a linearly ordered set, we introduce its symmetric version, and endow it with two operations extending supremum and infimum, so as to obtain an algebraic structure close to a commutative ring. We show that imposing symmetry necessarily entails non associativity, hence computing rules are defined in order to deal with non associativity. We study in details computing rules, which we endow with a partial order. This permits to find solutions to the inversion formula underlying the Möbius transform. Then we apply these results to the case of capacities, a notion from decision theory which corresponds, in the language of ordered sets, to order preserving mappings, preserving also top and bottom. In this case, the solution of the inversion formula is called the Möbius transform of the capacity. Properties and examples of Möbius transform of sup-preserving and inf-preserving capacities are given.