Autoregressive conditional betas

Fiche du document

Date

2024

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jeconom.2023.105630

Collection

Archives ouvertes

Licence

info:eu-repo/semantics/OpenAccess



Sujets proches En

Pattern Model

Citer ce document

F. Blasques et al., « Autoregressive conditional betas », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1016/j.jeconom.2023.105630


Métriques


Partage / Export

Résumé En

This paper introduces an autoregressive conditional beta (ACB) model that allows regressions with dynamic betas (or slope coefficients) and residuals with GARCH conditional volatility. The model fits in the (quasi) score-driven approach recently proposed in the literature, and it is semi-parametric in the sense that the distributions of the innovations are not necessarily specified. The time-varying betas are allowed to depend on past shocks and exogenous variables. We establish the existence of a stationary solution for the ACB model, the invertibility of the score-driven filter for the time-varying betas, and the asymptotic properties of one-step and multistep QMLEs for the new ACB model. The finite sample properties of these estimators are studied by means of an extensive Monte Carlo study. Finally, we also propose a strategy to test for the constancy of the conditional betas. In a financial application, we find evidence for time-varying conditional betas and highlight the empirical relevance of the ACB model in a portfolio and risk management empirical exercise.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines