How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research

Fiche du document

Type de document
Périmètre
Langue
Identifiants
Relations

Ce document est lié à :
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.im.2019.05.003

Collection

Archives ouvertes

Licences

http://creativecommons.org/licenses/by-nc/ , info:eu-repo/semantics/OpenAccess



Sujets proches En

Pattern Model

Citer ce document

Jose Benitez et al., « How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research », HAL SHS (Sciences de l’Homme et de la Société), ID : 10.1016/j.im.2019.05.003


Métriques


Partage / Export

Résumé En

Partial least squares path modeling (PLS-PM) is an estimator that has found widespread application for causal information systems (IS) research. Recently, the method has been subject to many improvements, such as consistent PLS (PLSc) for latent variable models, a bootstrap-based test for overall model fit, and the heterotrait-to-monotrait ratio of correlations for assessing discriminant validity. Scholars who would like to rigorously apply PLS-PM need updated guidelines for its use. This paper explains how to perform and report empirical analyses using PLS-PM including the latest enhancements, and illustrates its application with a fictive example on business value of social media.

document thumbnail

Par les mêmes auteurs

Sur les mêmes sujets

Sur les mêmes disciplines